根据现有临床数据,对符合条件的转移性NSCLC患者应当进行EGFR检测,其中包含有常见突变及罕见突变。同时,NCCN专家建议对符合条件的的可切除IB至IIIA期NSCLC患者进行 EGFR突变的分子检测,以确定是否可以选择使用奥希替尼进行辅助治疗。
EGFR 19号外显子缺失和21号外显子突变 (L858R)是NSCLC患者中最常见的突变,这两种突变分别占所有突变患者的45%和40%。两种突变都会导致酪氨酸激酶结构域的激活, 并与小分子 EGFR TKI 药物的敏感性有关,例如厄洛替尼、吉非替尼、阿法替尼、奥希替尼和达克替尼[12]。在以前,这些突变常被表述为敏感性突变,但现在更多的特殊突变被人们发现。这些常见的 EGFR 突变存在于大约 10% 的非小细胞肺癌白种人患者和高达 50% 的亚洲患者中[13]。其他不太常见的突变(约 10%)也对 EGFR TKI 敏感,包括exon 19 插入, p.S768I, p.L861Q和p.G719X[14,15]。目前的证据表明,对于没有这些特异性EGFR 突变的肿瘤患者,不应在任何治疗方案中使用 EGFR TKI 进行治疗。
图片来源: Riely GJ, Clin Cancer Res, 2006 Dec 15.
绝大多数具有常见 EGFR 突变的腺癌患者是不吸烟者或轻度吸烟者。有数据表明,腺鳞癌患者也可发生 EGFR 突变,但腺鳞癌在小标本中很难与鳞状细胞癌区分[16]。单纯的鳞状细胞癌患者不太可能出现常见的 EGFR 突变;但那些患有腺鳞癌的人可能会有突变[3,4,16] 。尽管如此,吸烟状况、种族和组织学类型都不应当作为选择检测人群的标准。尽管发生率低于转移性 NSCLC 腺癌患者[2,3,4,8,9], NCCN 的专家组仍然建议对所有转移性 NSCLC 鳞状细胞癌患者进行分子检测,因为这些患者也可能具有临床意义的生物标志物变异,例如 EGFR 突变。
EGFR 19 号外显子缺失和 L858R 突变预测TKI药物疗效的作用已被确认。具有这些常见 EGFR 突变的患者对阿法替尼、达克替尼、厄洛替尼、吉非替尼或奥希替尼的反应明显更好[12]。目前的临床实验数据表明, EGFR TKI 疗法作为晚期 NSCLC 中常见 EGFR 突变患者的一线单药治疗是有效的。与细胞毒性的全身治疗(化疗)相比,使用 EGFR TKI 单药治疗携带EGFR 突变的患者,其无进展生存期 (PFS) 更长,但阿法替尼、厄洛替尼、吉非替尼的总生存期没有统计学差异[17,18,23,24]。对 EGFR TKI 治疗无反应则与 KRAS 和 BRAF 突变以及 ALK 或 ROS1 基因重排有关。另外,EGFR 外显子 20 插入突变的患者通常对厄洛替尼、吉非替尼、阿法替尼或达克替尼耐药,但也有罕见的例外(例如,p.A763_Y764insFQEA)。患者通常会在一线 EGFR TKI 单一疗法治疗后出现疾病的进展(耐药) 。
当大多数普通EGFR突变患者对阿法替尼、厄洛替尼或吉非替尼产生耐药性时,其PFS为9.7至13个月[18,24,27-29]。EGFR p.Thr790Met (T790M) 是一种与 EGFR TKI 治疗相关的获得性耐药突变,据报道,约 60%在对厄洛替尼、吉非替尼、吉非替尼、或阿法替尼初始敏感的患者,其发生耐药后会出现T790M突变[10,29-35]。有研究表明,T790M很少发生在以前从未接受过厄洛替尼、吉非替尼或阿法替尼治疗的患者中[36]。另外,无论是否吸烟, 基因组上携带 p.T790M 者,都有高风险罹患肺癌[37-39]。 因此,如果在治疗前就发现了T790M突变,则建议患者进行遗传咨询。对 EGFR TKI 的获得性耐药也可能与患者从 NSCLC 到 SCLC 的组织学转化以及上皮到间质转化有关[40-44]。专家们建议在疾病进展时可以考虑进行活检以排除 SCLC 转化并评估其耐药机制[41]。最后,获得性耐药也可由其它分子事件介导,如ALK重排,MET或ERBB2扩增等[45]。
图片来源: Yu HA, Clin Cancer Res. 2013 Apr 15.
综上,基于阿法替尼、达科米替尼、埃洛替尼、吉非替尼和奥西替尼疗效的数据[1,17-22],专家组建议对转移性非鳞状细胞肺癌或非特指型NSCLC患者的EGFR突变状态和其他生物标志物进行检测。同时,如前所述,鳞状细胞癌的患者也可以进行同样的检测。
DNA突变分析被用于评估EGFR状态,IHC则不建议用于检测EGFR突变[46-49]。荧光定量PCR、Sanger测序和NGS是常用的检测EGFR技术[7,46]。直接测序18至21号外显子(或者仅检测19,21号外显子),是一种比较合理的方案;但也有更灵敏的方法[13,48,50,51]。如利用多重PCR进行的突变筛查可以同时检测50多个点突变[52] 。然而,NGS仍然是检测EGFR变体的首选方法, 因靶向PCR方法可能会漏掉一些EGFR外显子20插入突变[11]。
对于EGFR突变阳性(外显子19缺失,L858R)的转移性NSCLC患者,其一线治疗方案已确认。奥西替尼是EGFR阳性的转移性NSCLC患者首选的一线EGFR TKI选择。埃洛替尼(±贝伐单抗或拉穆昔单抗)、阿法替尼、达科替尼或吉非替尼等是一线EGFR TKI治疗的“其他推荐”选项。
而对于EGFR T790M阳性的转移性非小细胞肺癌或埃洛替尼(±贝伐单抗或拉穆昔单抗)、阿法替尼、达科替尼、吉非替尼治疗的疾病进展患者,则推荐奥西替尼作为二线及后续治疗[28,53]。
对第一代、第二代和第三代EGFR TKI(如埃洛替尼、阿法替尼、吉非替尼、奥西替尼;经典EGFR TKIs)同样敏感的较不常见的EGFR突变(约10%)包括外显子19插入,p.L861Q、p.G719X和p.S768I[14,15,23,54]。有鉴于阿法替尼或奥西替尼是携带EGFR S768I、L861Q和G719X患者一线治疗方案,推荐对转移性NSCLC患者进行这些位点的检测[23,54]。在此情形中,其它推荐的TKI药物还有埃洛替尼、吉非替尼或达科米替尼[55,56]。
20号外显子插入突变是第三种常见的EGFR突变, 它们发生在约2%的NSCLC患者和4%至12%的EGFR突变患者中[6,26,57,58]。尽管有许多不同的EGFR外显子20插入突变,但这三种(insASV、insSVD和insNPH)最为常见[6]。大多数EGFR外显子20插入突变患者对埃洛替尼、阿法替尼或吉非替尼的应答率较低(≤9%)[5,6]。但p.A763_Y764insFQEA突变是个例外, 埃洛替尼、阿法替尼或吉非替尼对这个EGFR 20外显子插入突变的患者有效[25]。
当以高剂量(160 mg/天)使用时,奥西替尼对EGFR 20外显子插入突变的患者应答率约为25%,这远低于EGFR外显子19缺失或L858R突变携带者[59]。一线铂类化疗(±免疫疗法)是EGFR 20外显子突变患者的推荐疗法[60-62]。与接受厄洛替尼、阿法替尼或吉非替尼靶向治疗(约39个月)的EGFR外显子19缺失或L858R突变患者相比,接受一线铂类治疗的EGFR 20外显子插入突变的患者的中位总生存期较短(约16个月)[5,63,64]。其免疫治疗的应答率(0-25%)则取决于不同的EGFR 20外显子插入种类[6,65,66]。
有鉴于amivantamab-vmjw(JNJ-6732)和莫博塞替尼(TAK788)在后线治疗EGFR 20外显子插入突变患者的数据,NCCN专家们推荐在转移性NSCLC患者中进行EGFR 20外显子插入突变的检测[5,6]。NGS是检测EGFR 20插入突变的首选,PCR策略则会漏掉一些变异。
图片来源;Zhou C, JAMA Oncol. 2021 Dec 1
对肺癌常见的 52 个热点突变基因进行高深度测序,覆盖国内外 FDA/NMPA 批准上市、NCCN 指 南推荐,以及在临床试验阶段的 279 种靶向药物;同时提供 lynch 综合症相关 EPCAM、MLH1、MSH2、 MSH6、PMS2 等 MMR 基因的致病突变解读,以及基于万人级别药物基因组数据的 PharmGKB 数据 库中肿瘤常用 38 种化疗药物疗效及毒副作用评估结果,适用于初诊患者的全面靶点检测和药物筛选,同时对于复发转移、多发耐药的肺癌患者提供跨适应症用药、治疗方案更换的分子依据。
参考文献
[1] Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N Engl J Med 2020;382:41-50.
[2] Ettinger DS, Wood DE, Aisner DL, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines?) for Non Small Cell Lung Cancer (Version 4.2022).
[3] Lam VK, Tran HT, Banks KC, et al. Targeted Tissue and Cell-Free Tumor DNA Sequencing of Advanced Lung Squamous-Cell Carcinoma Reveals Clinically Significant Prevalence of Actionable Alterations. Clin Lung Cancer 2019;20:30-36 e33.
[4] Sands JM, Nguyen T, Shivdasani P, et al. Next-generation sequencing informs diagnosis and identifies unexpected therapeutic targets in lung squamous cell carcinomas. Lung Cancer 2020;140:35-41.
[5] Park K, Haura EB, Leighl NB, et al. Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study. J Clin Oncol 2021;39:3391-3402.
[6] Zhou C, Ramalingam SS, Kim TM, et al. Treatment Outcomes and Safety of Mobocertinib in Platinum-Pretreated Patients With EGFR Exon 20 Insertion-Positive Metastatic Non-Small Cell Lung Cancer: A Phase 1/2 Open-label Nonrandomized Clinical Trial. JAMA Oncol 2021;7:e214761.
[7] Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol 2013;8:823-859.
[8] Mazieres J, Drilon A, Lusque A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol 2019;30:1321-1328.
[9] Sholl LM, Aisner DL, Varella-Garcia M, et al. Multi-institutional Oncogenic Driver Mutation Analysis in Lung Adenocarcinoma: The Lung Cancer Mutation Consortium Experience. J Thorac Oncol 2015;10:768-777.
[10] Yu PP, Vose JM, Hayes DF. Genetic Cancer Susceptibility Testing: Increased Technology, Increased Complexity. J Clin Oncol 2015;33:3533-3534.
[11] Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol 2013;31:1039-1049.
[12] Langer CJ. Epidermal growth factor receptor inhibition in mutation-positive non-small-cell lung cancer: is afatinib better or simply newer? J Clin Oncol 2013;31:3303-3306.
[13] Hirsch FR, Bunn PA, Jr. EGFR testing in lung cancer is ready for prime time. Lancet Oncol 2009;10:432-433.
[14] Riely GJ, Politi KA, Miller VA, Pao W. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 2006;12:7232-7241.
[15] O'Kane GM, Bradbury PA, Feld R, et al. Uncommon EGFR mutations in advanced non-small cell lung cancer. Lung Cancer 2017;109:137-144.
[16] Paik PK, Varghese AM, Sima CS, et al. Response to erlotinib in patients with EGFR mutant advanced non-small cell lung cancers with a squamous or squamous-like component.
[17] Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013;31:3327-3334.
[18] Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13:239-246.
[19] Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010;11:121-128.
[20] Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010;362:2380-2388.
[21] Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011;12:735-742.
[22] Zhou C, Wu YL, Chen G, et al. Updated efficacy and quality-of-life (QoL) analyses in OPTIMAL, a phase III, randomized, open-label study of first-line erlotinib versus gemcitabine/carboplatin in patients with EGFR-activating mutation-positive (EGFR Act Mut+) advanced non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol 2011;29(Suppl 15):Abstract 7520.
[23] Yang JC, Wu YL, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 2015;16:141-151.
[24] Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361:947-957.
[25] Vasconcelos P, Gergis C, Viray H, et al. EGFR-A763_Y764insFQEA Is a Unique Exon 20 Insertion Mutation That Displays Sensitivity to Approved and In-Development Lung Cancer EGFR Tyrosine Kinase Inhibitors. JTO Clin Res Rep 2020;1.
[26] Arcila ME, Nafa K, Chaft JE, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther 2013;12:220-229.
[27] Nishino M, Cardarella S, Jackman DM, et al. RECIST 1.1 in NSCLC patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors: comparison with RECIST 1.0. AJR Am J Roentgenol 2013;201:W64-71.
[28] Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med 2017;376:629-640.
[29] Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 2013;19:2240-2247.
[30] Riely GJ, Yu HA. EGFR: The Paradigm of an Oncogene-Driven Lung Cancer. Clin Cancer Res 2015;21:2221-2226.
[31] Finlay MR, Anderton M, Ashton S, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J Med Chem 2014;57:8249-8267.
[32] Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol 2013;31:3987-3996.
[33] Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005;2:e73.
[34] Kosaka T, Yatabe Y, Endoh H, et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 2006;12:5764-5769.
[35] Onitsuka T, Uramoto H, Nose N, et al. Acquired resistance to gefitinib: the contribution of mechanisms other than the T790M, MET, and HGF status. Lung Cancer 2010;68:198-203.
[36] Rosell R, Molina MA, Costa C, et al. Pretreatment EGFR T790M mutation and BRCA1 mRNA expression in erlotinib-treated advanced non-small-cell lung cancer patients with EGFR mutations. Clin Cancer Res 2011;17:1160-1168.
[37] Berry DK, Wang X, Michalski ST, et al. Clinical Cohort Analysis of Germline EGFR T790M Demonstrates Penetrance Across Ethnicities and Races, Sexes, and Ages. JCO Precis Oncol 2020;4.
[38] Oxnard GR, Miller VA, Robson ME, et al. Screening for germline EGFR T790M mutations through lung cancer genotyping. J Thorac Oncol 2012;7:1049-1052.
[39] Gazdar A, Robinson L, Oliver D, et al. Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J Thorac Oncol 2014;9:456-463.
[40] Schoenfeld AJ, Chan JM, Kubota D, et al. Tumor Analyses Reveal Squamous Transformation and Off-Target Alterations As Early Resistance Mechanisms to First-line Osimertinib in EGFR-Mutant Lung Cancer. Clin Cancer Res 2020;26:2654-2663.
[41] Marcoux N, Gettinger SN, O'Kane G, et al. EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes. J Clin Oncol 2019;37:278-285.
[42] Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011;3:75ra26.
[43] Oxnard GR. Strategies for overcoming acquired resistance to epidermal growth factor receptor: targeted therapies in lung cancer. Arch Pathol Lab Med 2012;136:1205-1209.
[44] Suda K, Mizuuchi H, Maehara Y, Mitsudomi T. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny. Cancer Metastasis Rev 2012;31:807-814.
[45] Yu HA, Suzawa K, Jordan E, et al. Concurrent Alterations in EGFR-Mutant Lung Cancers Associated with Resistance to EGFR Kinase Inhibitors and Characterization of MTOR as a Mediator of Resistance. Clin Cancer Res 2018;24:3108-3118.
[46] Sholl LM, Cagle PT, Lindeman NI, et al. Template for reporting results of biomarker testing of specimens from patients with non-small cell carcinoma of the lung; Version: LungBiomarkers 1.3.0.0: College of American Pathologists; 2016.
[47] Han SW, Kim TY, Jeon YK, et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res 2006;12:2538-2544.
[48] Dacic S. EGFR assays in lung cancer. Adv Anat Pathol 2008;15:241-247.
[49] Sholl LM, Xiao Y, Joshi V, et al. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am J Clin Pathol 2010;133:922-934.
[50] Eberhard DA, Giaccone G, Johnson BE, Non-Small-Cell Lung Cancer Working G. Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting. J Clin Oncol 2008;26:983-994.
[51] Shepherd FA, Tsao MS. Epidermal growth factor receptor biomarkers in non-small-cell lung cancer: a riddle, wrapped in a mystery, inside an enigma. J Clin Oncol 2010;28:903-905.
[52] Dias-Santagata D, Akhavanfard S, David SS, et al. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med 2010;2:146-158.
[53] Janne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 2015;372:1689-1699.
[54] Cho JH, Lim SH, An HJ, et al. Osimertinib for Patients With Non-Small-Cell Lung Cancer Harboring Uncommon EGFR Mutations: A Multicenter, Open-Label, Phase II Trial (KCSG-LU15-09). J Clin Oncol 2020;38:488-495.
[55] Tu HY, Ke EE, Yang JJ, et al. A comprehensive review of uncommon EGFR mutations in patients with non-small cell lung cancer. Lung Cancer 2017;114:96-102.
[56] Otsuka T, Mori M, Yano Y, et al. Effectiveness of Tyrosine Kinase Inhibitors in Japanese Patients with Non-small Cell Lung Cancer Harboring Minor Epidermal Growth Factor Receptor Mutations: Results from a Multicenter Retrospective Study (HANSHIN Oncology Group 0212). Anticancer Res 2015;35:3885-3891.
[57] Riess JW, Gandara DR, Frampton GM, et al. Diverse EGFR Exon 20 Insertions and Co-Occurring Molecular Alterations Identified by Comprehensive Genomic Profiling of NSCLC. J Thorac Oncol 2018;13:1560-1568.
[58] Riely GJ, Neal JW, Camidge DR, et al. Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial. Cancer Discov 2021;11:1688-1699.
[59] Piotrowska Z, Wang Y, Sequist LV, Ramalingam SS. ECOG-ACRIN 5162: A phase II study of osimertinib 160 mg in NSCLC with EGFR exon 20 insertions. Journal of Clinical Oncology 2020;38:9513-9513.
[60] Chelabi S, Mignard X, Leroy K, et al. EGFR Exon 20 Insertion in Metastatic Non-Small-Cell Lung Cancer: Survival and Clinical Efficacy of EGFR Tyrosine-Kinase Inhibitor and Chemotherapy. Cancers (Basel) 2021;13.
[61] Byeon S, Kim Y, Lim SW, et al. Clinical Outcomes of EGFR Exon 20 Insertion Mutations in Advanced Non-small Cell Lung Cancer in Korea. Cancer Res Treat 2019;51:623-631.
[62] Naidoo J, Sima CS, Rodriguez K, et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer 2015;121:3212-3220.
[63] Dersarkissian M, Bhak R, Lin H, et al. P2.01-103 Real-World Treatment Patterns and Survival in Non-Small Cell Lung Cancer Patients with EGFR Exon 20 Insertion Mutations. Journal of Thoracic Oncology 2019;14:S681.
[64] Morita C, Yoshida T, Shirasawa M, et al. Clinical characteristics of advanced non-small cell lung cancer patients with EGFR exon 20 insertions. Sci Rep 2021;11:18762.
[65] Ou S-HI, Lin HM, Hong J-L, et al. Real-world response and outcomes in NSCLC patients with EGFR exon 20 insertion mutations. Journal of Clinical Oncology 2021;39:9098-9098.
[66] Udagawa H, Matsumoto S, Ohe Y, et al. OA07.03 Clinical Outcome of Non-Small Cell Lung Cancer with EGFR/HER2 Exon 20 Insertions Identified in the LC-SCRUM-Japan. Journal of Thoracic Oncology 2019;14:S224.
CTI华测艾普满分通过2023年“全国血液微生物cfDNA宏基因组高通量测序室间质量评价预研活动”
11月15日,国家卫生健康委临床检验中心公布了2023年全国血液微生物cfDNA宏基因组高通量测序室间质量评价预研活动结果报告,经过严格的考核与评估,华测艾普医学检验所(以下简称“华测艾普“)满分通过了此次考评,以优秀的成绩展现了其精准化医疗服务的实力,代表着华测艾普的检测能力获得国家权威机构的充分认可,是华测艾普医学技术实力和高质量水平的充分体现,也印证了华测艾普在病原微生物宏基因组检测领域的重要地位。
2023-11-20 22:34:55
免疫力|带你了解可以防御“外敌“的免疫基因
免疫力是人体自身的防御机制,可以识别和消灭外来侵入的任何异物(病毒、细菌等),是处理衰老、损伤、死亡、变性的自身细胞和病毒感染细胞的能力。在人体受到外来物刺激之后,免疫系统会被激活,各种免疫相关调控因子介入,使得人体尽快恢复内环境稳定。
2022-05-09 07:53:05
不同加工工艺对产品中目标基因检测的影响因素探讨
近年来,随着分子生物学技术的不断更新迭代,以分子生物学技术为基础的掺假掺伪检测、特定基因成分检测、过敏原成分分析等技术方法被大量应用于产品安全检测领域,相关检测结果也被作为产品真伪、原料溯源等方面的重要参考依据,但受多重因素影响,在实际检测过程中经常遭遇DNA无法提取或者提取质量较差等情况,从而影响目标基因的定性检出或定量检测。
2022-01-14 01:33:36